欢迎访问:沃派博客 每天不定时发布IT文章相关资讯
当前位置:沃派博客-沃派网 > IT文章 > 正文

你们把AI吹上了天,但它却依然没4岁的小孩聪明!

03-03 IT文章

你们把AI吹上了天,但它却依然没4岁的小孩聪明!

图片来源@视觉中国

钛媒体注:本文来源于网易智能,内容选自:史密森学会杂志,作者:Alison Gopnik,由网易智能编译,钛媒体经授权转载。

有研究表明,人工智能听上去很厉害,但目前最先进的人工智能还远远不能解决人类4岁儿童能够轻松解决的问题,那么,人工智能会变得比4岁的孩子更聪明吗?看看孩子们如何处理信息如何学习的,大家或许能获得启发。

每个人都听说过人工智能的新进展,尤其是机器学习,尽管人工智能的名称令人印象深刻,但该技术在很大程度上是由检测大数据集中的统计模式的技术构成的,人类的学习方法可远不止于此。

人类是如何学习的

我们是怎么对我们周围的世界了解得这么多的呢?即使还是儿童的时候,我们也能学到很多的东西,比如四岁的孩子已经知道植物、动物和机器;欲望、信念和情感;甚至恐龙和宇宙飞船。

科学已经把我们对世界的认识扩展到不可想象的地步,扩展到宇宙的边缘和时间的开始,我们用这些知识进行新的分类和预测,想象各种新的可能性,并在这个世界促成新的事情的发生,但触及这个世界的只是一股触及我们视网膜的光子流以及干扰耳膜的空气,当我们拥有的例证如此有限的时候,我们是如何用眼睛后面的几磅灰色黏液来完成这一切的呢?

你们把AI吹上了天,但它却依然没4岁的小孩聪明!

来源于史密森学会杂志

到目前为止,最好的答案是,我们的大脑基于触达我们各种感官的具体特定而又混乱的数据进行运算,然后那些运算产生了对世界的准确描述,表现形式似乎是结构化的、抽象的和层次化的,它们包括对三维物体的感知,构成语言基础的语法,以及“心智理论”等心智能力。

“心智理论”能让我们理解他人的想法,这些表现形式使得我们能够做出各种各样的新预测,并以人类特有的创造性方式想象出许多新的可能性。

这种学习不是唯一的一种智力形式,但对人类来说尤其重要,这种智力是小孩子的专长,尽管孩子们在计划和决策方面非常糟糕,但他们是世界上最好的学习者,事实上,很多将数据转化为理论的过程发生在我们五岁之前。

人类两种基本的学习方法

自亚里士多德和柏拉图以来,有两种基本的方法来解决我们如何知道我们所知道的东西的问题,它们仍然是机器学习的主要方法。

亚里士多德自下而上来解决这个问题:从感觉开始——光子流和空气振动(或数字图像或录音的像素或声音样本),这样看你能否从中发现学习模式,这种方法被像哲学家大卫·休谟(David Hume)和密尔(J. S. Mill)这样的古典联想主义者以及后来的像巴甫洛夫(Pavlov)和斯金纳(B. F. Skinner)这样的行为心理学家进一步发扬。从这个观点来看,表现形式的抽象性和层次性结构是一种错觉,或者至少是一种附带现象,所有的工作都可以通过关联和模式检测来完成,特别是如果有足够数据的话。

这种自下而上的学习方法和柏拉图的自上而下的学习方法一直共存,谁也无法一直压过对方。

也许我们从具体的数据中获得抽象的知识,是因为我们已经知道了很多的东西,特别是由于进化,我们已经有了一系列基本的抽象概念。像科学家一样,我们可以用这些概念来构建关于世界的假设,然后,如果那些假设是正确的,我们就可以预测数据应该是什么样的,而不是试图从原始数据中发现模式,与柏拉图一样,笛卡尔(Descartes)、诺姆乔姆斯基(Noam Chomsky)等“理性主义”哲学家和心理学家也采取了这种方法。

有一个日常例子可说明上述两种方法之间的差异,它就是解决垃圾邮件泛滥的问题,那些邮件数据由收件箱中长长的未分类的消息列表组成,现实情况是,其中一部分邮件是非垃圾邮件,一部分是垃圾邮件。如何使用数据来区分它们呢?

先来考虑自下而上的方法,你会注意到,垃圾邮件往往有一些特征:长长的收件人列表,发送自尼日利亚,内文提及百万美元奖金或者壮阳药,问题是,完全有用的非垃圾邮件也可能具有这些特征,如果你看了足够多的垃圾邮件和非垃圾邮件的例子,你可能会发现垃圾邮件不仅往往具有这些特征,这些特征还往往以特定的方式出现在一起(尼日利亚来源以及提及100万美元奖金意味着有问题)。

事实上,可能有某种微妙的更高级的相关性可用来将垃圾邮件与有用的非垃圾邮件区分开来——例如,拼写错误和IP地址比较特殊,如果检测到那些特殊的模式,就可以过滤掉垃圾邮件。自下而上的机器学习技术正是这样做的,学习者会得到数百万个例子,每个例子都有某些特征,每个例子都被标记为垃圾邮件(或者其他的类别),计算机可以提取出区分二者的特征的模式,即便那些特征非常微妙。

版权保护: 本文由 沃派博客-沃派网 编辑,转载请保留链接: http://www.bdice.cn/html/40209.html